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Abstract. Zonotopes are promising abstract domains for machine learning oriented
tasks due to their computational efficiency, but they lack the expressiveness required
to precisely handle complex transformations, such as the softmax function, prevalant
in the transformer architecture. Hybrid Constrained Zonotopes (HCZ) address this
limitation by incorporating linear constraints and binary generators, enabling the
representation of non-convex sets. However, existing HCZ rely on Mixed-Integer
Linear Programming (MILP) solvers for concretisation, resulting in exponential
time complexity that renders them impractical for large-scale models. This work
leverages the Lagrangian duality to develop polynomial-time convex relaxations for
HCZ operations. Nonetheless, as the HCZ’s operations are not designed to handle
convex relaxations, the overapproximation is potentially exessive. Thus, future work
is needed to make HCZ usable for Large Language Model’s verification.

1. Introduction
A Zonotope represents a set as the Minkowski sum of line segments, enabling

instant concretisation. As they lack precision, recent research proposed various
new enhanced Zonotope abstract domains. Constrained Zonotopes add linear
constraints to improve precision. Polynomial Zonotopes extend the representation
by incorporating polynomial generators. Finally, Hybrid Constrained Zonotopes
(HCZ) combine binary generators and linear equality constraints, enabling the use
of non-convex sets, unions and intersections, which makes operations like the ReLU
exact.

Nonetheless, despite the advantage of constrained Zonotopes, their practical use
is limited by their computational complexity as the concretisation requires solving
the linear equalities, which is NP-hard. Working with Large Language Models
(LLM), they become unusable.

This paper addresses the scalability issue of HCZ through the following contri-
butions: a polynomial-time convex relaxation for the concretisation, a polynomial-
time dot product, lighter reductions methods that do not require solving MILP,
and memory-efficient operations using sparse tensors.

It does not, however, addresses the new problem of over-approximation induced
by the relaxations. Future work will have to adapt the operations to this concreti-
sation method.

We will start by quickly presenting classical Zonotopes, and the previous state of
HCZ. We will then describe the new methods, along with proofs. A later paragraph
will be dedicated on the over-approximation issue, and potential direction for
future work.
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2. Classical Zonotope
A classical Zonotope [1] in ℝ𝑁  abstracts a set of 𝑁  variables through affine

expressions over shared noise symbols:
𝑧 = 𝑐 + 𝐺ℰ (1)

Where 𝑐 ∈ ℝ𝑁  is the center, or the bias, 𝐺 ∈ ℝ𝑁×𝐼 is the generator matrix, and
ℰ ∈ [−1, 1]𝐼 represents 𝐼 noise symbols.

The concretisation 𝛾(𝑧) = {𝑐 + 𝐺ℰ | ℰ ∈ [−1, 1]𝐼} can be efficiently computed
as interval bounds, the lower bound 𝑙 = 𝑐 − ‖𝐺‖1, and the upper bound 𝑢 = 𝑐 +
‖𝐺‖1. This 𝑂(𝑁 × 𝐼) complexity makes Zonotope highly scalable, but greatly limits
their expressiveness.

3. Hybrid Constrained Zonotope
Hybrid Constrained Zonotopes extend classical zonotopes by incorporating

linear constraints and binary generators, they are defined as:

𝑧 = 𝑐 + 𝐺ℰ + 𝐺′ℰ′,    s.t.  
{{
{
{{𝐴ℰ + 𝐴′ℰ′ = 𝑏

ℰ ∈ [−1, 1]𝐼
ℰ′ ∈ {−1, 1}𝐼′

(2)

Where 𝑐 ∈ ℝ𝑁  is the center, 𝐺 ∈ ℝ𝑁 × ℝ𝐼 and 𝐺′ ∈ ℝ𝑁 × ℝ𝐼′ are continuous and
binary generator matrices, ℰ ∈ [−1, 1]𝐼 and ℰ′ ∈ {−1, 1}𝐽  represent the 𝐼 contin-
uous and 𝐽  binary noise symbols. 𝐴 ∈ ℝ𝐽 × ℝ𝐼 , 𝐴′ ∈ ℝ𝐽 × ℝ𝐼′ , and 𝑏 ∈ ℝ𝐽  define
the 𝐼′ linear constraints.

This definition can be extended to multi-dimensional variables with 𝑐 ∈ ℝ…, 𝐺 ∈
ℝ…×𝐼 , and 𝐺′ ∈ ℝ…×𝐼′ .

3.1. Dual-based concretisation.
The primary computational bottleneck in HCZ is concretisation. The exact lower

bound requires solving:
𝑙 = min

𝐴ℰ+𝐴′ℰ′=𝑏
ℰ∈[−1,1]𝐼

ℰ′∈{−1,1}𝐼′

𝑐 + 𝐺ℰ + 𝐺′ℰ′ (3)

This is a MILP due to the binary constraints, leading to exponential complexity.
We address this with the dual Lagrangian optimisation problem.
Proposition 1: (Dual concretisation bounds) If the HCZ is not empty – ie,
there exists ℰ ∈ [−1, 1]𝐼 , ℰ′ ∈ {−1, 1}𝐼′ such that 𝐴ℰ + 𝐴′ℰ′ = 𝑏 – sound lower and
upper bounds can be computed as:

𝑙 ≥ max
Λ∈ℝ𝑁×ℝ𝐽

𝑐 + Λ𝑏 − ‖𝐺 − Λ𝐴‖1 − ‖𝐺′ − Λ𝐴′‖1 (4.1)

𝑢 ≤ − max
Λ∈ℝ𝑁×ℝ𝐽

−𝑐 + Λ𝑏 − ‖𝐺 + Λ𝐴‖1 − ‖𝐺′ + Λ𝐴′‖1 (4.2)

Proof. The previous minimisation problem can be rewritten:
𝑙 = min

∀𝑗∈⟦1,𝐽⟧
𝐴𝑗ℰ+𝐴′

𝑗ℰ′−𝑏𝑗=0

min
ℰ∈[−1,1]𝐼

ℰ′∈{−1,1}𝐼′

𝑐 + 𝐺ℰ + 𝐺′ℰ′ (5.1)
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= min
∀𝑗∈⟦1,𝐽⟧

ℎ𝑗(ℰ,ℰ′)=0

𝑓(ℰ, ℰ′) (5.2)

Transforming the objective into its dual, it becomes:

𝐿(ℰ, ℰ′, 𝜆) = max
𝜆∈ℝ𝑁

𝑓(ℰ, ℰ′) − ∑
𝐽

𝑗
𝜆𝑗ℎ𝑗(ℰ, ℰ′) (6.1)

= max
𝜆∈ℝ𝑁

min
ℰ∈[−1,1]𝐼

ℰ′∈{−1,1}𝐼′

𝑐 + 𝐺ℰ + 𝐺′ℰ′ − ∑
𝐽

𝑗
𝜆𝑗(𝐴𝑗ℰ + 𝐴′

𝑗ℰ′ − 𝑏𝑗) (6.2)

Using matrices instead:
𝐿(ℰ, ℰ′, Λ) = max

Λ∈ℝ𝑁×ℝ𝐽
min

ℰ∈[−1,1]𝐼

ℰ′∈{−1,1}𝐼′

𝑐 + Λ𝑏 + (𝐺 − Λ𝐴)ℰ + (𝐺′ − Λ𝐴′)ℰ′ (7)

Since [−1, 1]𝐼 × {−1, 1}𝐼′ is compact, we can reverse the min-max order:
𝐿(ℰ, ℰ′, Λ) = max

Λ∈ℝ𝑁×ℝ𝐽
min

ℰ∈[−1,1]𝐼

ℰ′∈{−1,1}𝐼′

𝑐 + Λ𝑏 + (𝐺 − Λ𝐴)ℰ + (𝐺′ − Λ𝐴′)ℰ′ (8.1)

= max
Λ∈ℝ𝑁×ℝ𝐽

𝑐 + Λ𝑏 − ‖𝐺 − Λ𝐴‖1 − ‖𝐺′ − Λ𝐴′‖1 (8.2)

= max
Λ∈ℝ𝑁×ℝ𝐽

𝑑(Λ) (8.3)

By weak duality, this provides a sound lower bound: 𝑙 ≥ 𝐿(ℰ, ℰ′, Λ) for every Λ ∈
ℝ𝑁 × ℝ𝐽 , ℰ ∈ [−1, 1], ℰ′ ∈ {−1, 1}.

Furthermore, (𝐺, 𝐺′) ∈ [−1, 1]𝐼 × {−1, 1}𝐼′ ensures the set defined by the HCZ
is finite and admits a maximum. Thus the maximum can be computed as the
minimum of −𝑓 , and the upper bound 𝑢 can be computed as follows:

−𝑢 ≥ min
∀𝑗∈⟦1,𝐽⟧

𝐴𝑗ℰ+𝐴′
𝑗ℰ′−𝑏𝑗=0

min
ℰ∈[−1,1]𝐼

ℰ′∈{−1,1}𝐼′

−𝑐 − 𝐺ℰ − 𝐺′ℰ′ (9)

The same procedure leads to:
−𝑢 ≥ max

Λ∈ℝ𝑁×ℝ𝐽
−𝑐 + Λ𝑏 − ‖−𝐺 − Λ𝐴‖1 − ‖−𝐺′ − Λ𝐴′‖1 (10)

 □

Proposition 2: (Concretisation complexity) The concretisation has a time
complexity linear in the number of variables and precision: 𝑂(𝑁 × 𝐽 × max(𝐼, 𝐼′) ×
n_steps).

Proof. The forward pass has a complexity of 𝑂(𝑁 × 𝐽) + 𝑂(𝑁 × 𝐽 × 𝐼) + 𝑂(𝑁 ×
𝐽 × 𝐼′) for the multiplications, and 𝑂(𝑁 × 𝐼) + 𝑂(𝑁 × 𝐼′) for the norm, thus an
overall complexity of 𝑂(𝑁 × 𝐽 × max(𝐼, 𝐼′)). The backward pass has the same
complexity with automatic differentiation, which is the case in frameworks like
PyTorch.

If the optimiser used is Adam, it costs 𝑂(𝑁 × 𝐽), with n_steps iterations, which
gives the total complexity of 𝑂(𝑁 × 𝐽 × max(𝐼, 𝐼′) × n_steps).  □
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Proposition 3: (Emptiness) There exists a finite number of optimisation steps
𝑁 , such that for 𝑧 concretized with n_steps > 𝑁 :

𝑧 ≠ ∅ ⇔ 𝑙 ≤ 𝑢 (11)

Proof. Using the Equation 4 to compute 𝑙 gives for each optimisation step 𝑘:
𝑙𝑘 ≥ max

Λ∈ℝ𝑁×ℝ𝐽
min

ℰ∈[−1,1]𝐼

ℰ′∈{−1,1}𝐼′

𝑐 + 𝐺ℰ + 𝐺′ℰ′ − Λ(𝐴ℰ + 𝐴′ℰ′ − 𝑏) (12.1)

≥ max
Λ∈ℝ𝑁×ℝ𝐽

𝛼 − Λ𝛽 (12.2)

With 𝛼 ∈ ℝ𝑁 , 𝛽 ∈ ℝ𝐽 . If the HCZ is empty, there is no ℰ ∈ [−1, 1]𝐼 , ℰ′ ∈ {−1, 1}𝐼′

such that 𝐴ℰ + 𝐴′ℰ′ − 𝑏, thus |𝛽| > 0, and 𝑙𝑘 →
∞

𝑙 = +∞. Similarly, 𝑢𝑘 →
∞

𝑢 = −∞.
As the optimisation objective is concave – 𝑑(Λ) is concave – there exists 𝑀  such
that ∀𝑛 ≥ 𝑁, 𝑙𝑛 > 𝑢𝑛.  □

4. Abstract Transformers
Set operations – Minkowski sum, cartesian product, intersection, union – are

already defined by [2], and the general abstract transformer construction for the
classical Zonotope on convex functions is already defined by [3]. The following
sections will only extend the tranformer construction to HCZ, and propose the new
operation needed for LLMs, the dot product.

4.1. General abstract transformer construction for classical Zonotopes.
Proposition 4: (General abstract transformer construction for classical
Zonotopes) Given an input Zonotope 𝑥, with bounds [𝑙, 𝑢], the sound abstract
transformer of a convex 𝐶1 continuous function 𝑓 : ℝ → ℝ is defined as:

𝑦 = 𝜆𝑥 + 𝜇 + 𝛽𝜀new (13)

With:
𝜆 = 𝑓 ′(𝑡) (14.1)

𝜇 = 1
2
(𝑓(𝑡) − 𝜆𝑡 + {𝑓(𝑙) − 𝜆𝑙,  if 𝑡 ≥ 𝑡crit

𝑓(𝑢) − 𝜆𝑢,  if 𝑡 < 𝑡crit
) (14.2)

𝛽 = 1
2
(𝜆𝑡 − 𝑓(𝑡) + {𝑓(𝑙) − 𝜆𝑙,  if 𝑡 ≥ 𝑡crit

𝑓(𝑢) − 𝜆𝑢,  if 𝑡 < 𝑡crit
) (14.3)

∇𝑥𝑓(𝑥)|𝑥=𝑡crit
= 𝑓(𝑢) − 𝑓(𝑙)

𝑢 − 𝑙
(14.4)

The minimal area abstract transformer is computed using 𝑡 = 𝑡crit.

Proof. [3]  □

It is possible to take into account additional constraints on the output, by applying
them to Equation 13, which will yield 𝑡crit2.
Proposition 5: (Positive exponential abstract transformer) The positive
exponential can be computed using 𝑡opt = min(𝑡crit, 𝑡crit2), with 𝑡crit2 = 𝑙 + 1.

Proof. For the output of the exponential to be positive, 𝑦 has to verify 0 ≤ 𝑦. The
critical point 𝑡crit2 can then be chosen by solving min 𝑦 = 0. As the exponential
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is monotonically increasing, the minimum of 𝑦 will be found at the lower bound,
and the 𝑡crit2 will have to be chosen inferior to 𝑡crit. This leads to min 𝑦 = 𝜆𝑙 +
𝜇 − |𝛽|. As the exponential is convex, 𝑓 ′(𝑡) ≤ 𝑓(𝑡)−𝑓(𝑢)

𝑡−𝑢 ⇔ 𝑓(𝑡) − 𝜆𝑡 ≤ 𝑓(𝑢) − 𝜆𝑢 ⇔
𝜆𝑡 − 𝑓(𝑡) + 𝑓(𝑢) − 𝜆𝑢 ≥ 0 ⇔ 𝛽 ≥ 0, which leads to min 𝑦 = 𝜆(𝑙 − 𝑡) + 𝑓(𝑡). With
values, 0 = 𝑒𝑡crit2(𝑙 − 𝑡crit2 + 1) ⇒ 𝑡crit2 = 𝑙 + 1.  □

Proposition 6: (Positive reciprocal abstract transformer) The positive
reciprocal can be computed using 𝑡opt = max(𝑡crit, 𝑡crit2), with 𝑡crit2 = 𝑢

2 .

Proof. The same method applied to the reciprocal function, which is monoton-
ically decreasing leads to min 𝑦 = 𝜆𝑢 + 𝜇 − |𝛽| ⇒ 0 = 𝜆(𝑢 − 𝑡) + 𝑓(𝑡), and 0 =
− 1

𝑡2
crit2

(𝑢 − 𝑡crit2) + 1
𝑡crit2

⇒ 𝑡crit2 = 𝑢
2 .  □

Figure 1. Exponential abstract transformer for Zonotope using the positive
Zonotope (left), and the minimal area Zonotope (right).

Figure 2. Reciprocal abstract transformer for Zonotope using the positive Zono-
tope (left), and the minimal area Zonotope (right).

4.2. General abstract transformer construction for HCZ.
Proposition 7: (Double Zonotope HCZ transformer) As the HCZ handles
unions, it is possible to construct the HCZ using a union of two zonotopes, which
reduces the over-approximation area, while being non-convex. An approximately
minimal area HCZ can be defined using a mid point 𝑚 as 𝑓 ′(𝑚) = 𝑓(𝑢)−𝑓(𝑙)

𝑢−𝑙 , creating
two abstract transformer Zonotopes 𝑧1, 𝑧2 on [𝑙, 𝑚] and [𝑚, 𝑢], and performing a
union to create the HCZ abstract transformer.

Proof. If we only consider the part of the zonotope above the function as a proxy
to find a mid point, the area is:
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𝐴(𝑚) = 𝑓(𝑚) − 𝑓(𝑙)
2

(𝑚 − 𝑙) − ∫
𝑚

𝑙
𝑓

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑧1

+ 𝑓(𝑢) − 𝑓(𝑚)
2

(𝑢 − 𝑚) − ∫
𝑢

𝑚
𝑓

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑧1

(15)

As ∫𝑚
𝑙

𝑓 + ∫𝑢
𝑚

𝑓 = ∫𝑢
𝑙

𝑓 is constant, the mid point 𝑚∗ minimizing 𝐴 can be found
directly with:

d𝐴
d𝑚

= 0 ⇒ 𝑓 ′(𝑚) = 𝑓(𝑢) − 𝑓(𝑙)
𝑢 − 𝑙

(16)

 □

Using this method, the mid point for the exponential is 𝑚∗ = log(𝑒𝑢−𝑒𝑙

𝑢−𝑙 ), and for
the reciprocal: 𝑚∗ =

√
𝑢𝑙.

This method does not work when using additional constraints, and 𝑡crit2 instead
of 𝑡crit.

Figure 3. Exponential abstract transformer for the minimal area Zonotope vs the
approximately minimal area HCZ

Figure 4. Reciprocal abstract transformer for the minimal area Zonotope vs the
approximately minimal area HCZ

4.3. Dot product.
Proposition 8: (Dot product) Let 𝑍1 = ⟨𝑐1, 𝐺1, 𝐺′

1, 𝐴1, 𝐴′
1, 𝑏1⟩, 𝑍2 =

⟨𝑐2, 𝐺2, 𝐺′
2, 𝐴2, 𝐴′

2, 𝑏2⟩ ∈ ℝ𝑁 , then, the dot product can be computed as 𝑍1 ⋅ 𝑍2 =
⟨𝑐, 𝐺, 𝐺′, 𝐴, 𝐴′, 𝑏⟩ with:

𝑐 = 𝑐⊤
1 𝑐2,   𝐺 = [𝑐⊤

2 𝐺1 𝑐⊤
1 𝐺2 𝐺̂],   𝐺′ = [𝑐⊤

2 𝐺′
1 𝑐⊤

1 𝐺′
2] (17.1)
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𝐴 =

[
[
[𝐴1

𝟎
𝟎

𝟎
𝐴2
𝟎

𝟎
𝟎
𝐴]

]
]

,   𝐴′ =
[
[
[𝐴′

1
𝟎
𝟎

𝟎
𝐴′

2
𝟎]
]
],   𝑏 =

[
[
[𝑏1

𝑏2
𝑏̂]
]
]

(17.2)

𝐺̂ = [𝑙̂ 0 𝑢 0],   𝐴 = [1
0

1
0

0
1

0
1],   ̂𝑏 = [−1

1] (17.3)

𝑙̂ = (𝑙1 − 𝑐1)
⊤(𝑙2 − 𝑐2),   𝑢 = (𝑢1 − 𝑐1)

⊤(𝑢2 − 𝑐2) (17.4)

The matrices 𝐺̂, 𝐴, 𝑏̂ handle the quadratic cross-terms by introducing auxiliary
constraints and generators.

Proof.

𝑍1 ⋅ 𝑍2 = (𝑐1 + 𝐺1ℰ1 + 𝐺′
1ℰ′

1)
⊤(𝑐2 + 𝐺2ℰ2 + 𝐺′

2ℰ′
2) (18.1)

= 𝑐⊤
1 𝑐2 (18.2)

+𝑐⊤
1 𝐺2ℰ2 + 𝑐⊤

2 𝐺1ℰ1 + 𝑐⊤
1 𝐺′

2ℰ′
2 + 𝑐⊤

2 𝐺′
1ℰ′

1 (18.3)
+ℰ⊤

1 𝐺⊤
1 𝐺2ℰ2 + ℰ⊤

1 𝐺⊤
1 𝐺′

2ℰ′
2 + ℰ′⊤

1 𝐺′⊤
1 𝐺2ℰ2 + ℰ′⊤

1 𝐺′⊤
1 𝐺′

2ℰ′
2 (18.4)

Under the conditions:

(𝐶1,2){
𝐴1ℰ1 + 𝐴′

1ℰ′
1 = 𝑏1

𝐴2ℰ2 + 𝐴′
2ℰ′

2 = 𝑏2
,  (𝐶∞,1){

ℰ1 ∈ [−1, 1]𝐼1

ℰ′
1 ∈ {−1, 1}𝐼′

1
,  (𝐶∞,2){

ℰ2 ∈ [−1, 1]𝐼2

ℰ′
2 ∈ {−1, 1}𝐼′

2
(19)

By defining ℰ as [ℰ1
ℰ2

], and ℰ′ as [ℰ′
1

ℰ′
2
] in Equation 18.3, the new generators can be

defined as: [𝑐⊤
2𝐺1 𝑐⊤

1𝐺2], [𝑐⊤
2𝐺′

1 𝑐⊤
1𝐺′

2], and the new constraints as: [𝐴1
𝟎

𝟎
𝐴2

], [𝐴′
1
𝟎

𝟎
𝐴′

2
],

which will form a valid HCZ with the same constraints.
To take into account the last term (Equation 18.4), it is possible to bound it into

[𝑙, 𝑢], and then create new continuous noise terms for 𝑍1 ⋅ 𝑍2.

𝑙̂ = min
𝐶1,2

min
𝐶∞,1,2

ℰ⊤
1 𝐺⊤

1 𝐺2ℰ2 + ℰ⊤
1 𝐺⊤

1 𝐺′
2ℰ′

2 + ℰ′⊤
1 𝐺′⊤

1 𝐺2ℰ2 + ℰ′⊤
1 𝐺′⊤

1 𝐺′
2ℰ′

2 (20.1)

= min
𝐶1,2

min
𝐶∞,1,2

(ℰ⊤
1 𝐺⊤

1 𝐺2 + ℰ′⊤
1 𝐺′⊤

1 𝐺2)ℰ2 + (ℰ⊤
1 𝐺⊤

1 𝐺′
2 + ℰ′⊤

1 𝐺′⊤
1 𝐺′

2)ℰ′
2 (20.2)

= min
𝐶1,2

min
𝐶∞,1,2

(𝑍1 − 𝑐1)
⊤𝐺2ℰ2 + (𝑍1 − 𝑐1)

⊤𝐺′
2ℰ′

2 (20.3)

≥ min
𝐶2

min
𝐶∞,2

(𝑙1 − 𝑐1)
⊤(𝐺2ℰ2 + 𝐺′

2ℰ′
2) (20.4)

≥ min
𝐶2

min
𝐶∞,2

(𝑙1 − 𝑐1)
⊤(𝑍2 − 𝑐2) (20.5)

≥ (𝑙1 − 𝑐1)
⊤(𝑙2 − 𝑐2) (20.6)

Similarly: 𝑢 ≤ (𝑢1 − 𝑐1)
⊤(𝑢2 − 𝑐2). To add the bounded error [𝑙̂, 𝑢] to the result-

ing HCZ, we can add two error terms 𝑙̂𝜀𝑙 and 𝑢𝜀𝑢, with the constraints:
−1 ≤ 𝜀𝑙 ≤ 0 and 0 ≤ 𝜀𝑢 ≤ 1. These constraints can be expressed as equalities
by introducing two new error terms 𝜀𝑙, 𝜀𝑢: −1 ≤ 𝜀𝑙 ≤ 0 ∧ 0 ≤ 𝜀𝑢 ≤ 1 ≡ 𝜀𝑙 + 𝜀𝑙 =
−1 ∧ 𝜀𝑢 + 𝜀𝑢 = 1 ∧ 𝜀𝑙, 𝜀𝑙, 𝜀𝑢, 𝜀𝑢 ∈ [−1, 1], as 𝜀𝑙 + 𝜀𝑙 = −1 ∧ 𝜀𝑙, 𝜀𝑙 ∈ [−1, 1] ≡ 𝜀𝑙 ∈
[−2, 0] ∧ 𝜀𝑙 ∈ [−1, 1] ≡ 𝜀𝑙 ∈ [−1, 0].

The corresponding generators and constraints matrices are then:
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𝐺̂ = [𝑙̂ 0 𝑢 0], 𝐴 = [1
0

1
0

0
1

0
1], 𝑏̂ = [−1

1] (21)

 □

5. Reduction

5.1. Redundant continuous generators.
Proposition 9: Let 𝑖 ∈ ℕ𝐼 and:

ℰ𝐿,𝑖 = min{ℰ𝑖 | 𝐴ℰ + 𝐴′ℰ′ = 𝑏, ‖ℰ𝑗≠𝑖‖∞
≤ 1, ℰ′ ∈ {−1, 1}𝐼′} (22.1)

ℰ𝑈,𝑖 = max{ℰ𝑖 | 𝐴ℰ + 𝐴′ℰ′ = 𝑏, ‖ℰ𝑗≠𝑖‖∞
≤ 1, ℰ′ ∈ {−1, 1}𝐼′} (22.2)

Then, if [ℰ𝐿,𝑖, ℰ𝑈,𝑖] ⊆ [−1, 1], the 𝑖-th noise term can be removed to form the
following reduced HCZ [2]:

𝑍 = ⟨𝑐 + Γ𝐺𝑏, 𝐺 − Γ𝐺𝐴, 𝐺′ − Γ𝐺𝐴′, 𝐴 − Γ𝐴𝐴, 𝐴′ − Γ𝐴𝐴′, 𝑏 − Γ𝐴𝑏⟩ (23)

where Γ𝐺 = 𝐺𝐸𝑖𝑘(𝐴𝑘𝑖)
−1 ∈ ℝ𝑁×𝐽 , Γ𝐴 = 𝐴𝐸𝑖𝑘(𝐴𝑘𝑖)

−1 ∈ ℝ𝐽×𝐽 , 𝐸𝑖𝑘 ∈ ℝ𝐼×𝐽  is a ma-
trix with zero entries except for a one in the (𝑖, 𝑘) position, and 𝑘 ∈ ⟦1, 𝐽⟧ such
that 𝐴𝑘𝑖 ≠ 0.

Proof. [2]  □

While solving Equation 22 would require a MILP, it is possible to overapproximate
and find a portion of the candidates generators.
Proposition 10: For 𝑗 ∈ ⟦1, 𝐼⟧, and the interval ℐ𝑗 defined by:

ℐ𝑗 = ⋂
𝑘 {{

{
{{ 1

𝑎𝑘𝑗
[𝑏𝑘 − ∑𝑖≠𝑗|𝑎𝑘𝑖| − ∑𝑖|𝑎

′
𝑘𝑖|, 𝑏𝑘 + ∑𝑖≠𝑗|𝑎𝑘𝑖| + ∑𝑖|𝑎

′
𝑘𝑖|], if 𝑎𝑘𝑗 ≠ 0

[−∞, ∞], else
(24)

we have ℰ𝑗 ⊆ ℐ𝑗. Thus ℐ𝑗 ⊆ [−1, 1] ⇒ ℰ𝑗 ∈ [−1, 1], and ℰ𝑗 can be a candidate to
reduction.

Proof. Let 𝑗 ∈ ⟦1, 𝐼⟧, and 𝑘 ∈ ⟦1, 𝐽⟧, 𝐴𝑘ℰ + 𝐴′
𝑘ℰ′ = 𝑏𝑘 can be rewritten:

𝑎𝑘𝑗𝜀𝑗 = 𝑏𝑘 − ∑
𝑖≠𝑗

𝑎𝑘𝑖𝜀𝑖 − ∑
𝑖

𝑎′
𝑘𝑖𝜀′

𝑖 (25)

If 𝜀𝑗 does not appear in the equation, 𝑎𝑘𝑗 = 0 and the equation does not add any
information on 𝜀𝑗, 𝜀𝑗 ∈ [−∞, ∞]. If 𝑎𝑘𝑗 ≠ 0, the equation gives a lower and upper
bound on 𝜀𝑗:

1
𝑎𝑘𝑗

𝑏𝑘 − ∑
𝑖≠𝑗

|𝑎𝑘𝑖| − ∑
𝑖

|𝑎′
𝑘𝑖| ≤ 𝜀𝑗 ≤ 1

𝑎𝑘𝑗
𝑏𝑘 + ∑

𝑖≠𝑗
|𝑎𝑘𝑖| + ∑

𝑖
|𝑎′

𝑘𝑖| (26)

Let’s name this interval ℐ𝑗𝑘, then every line gives a new constraint, either [−∞, ∞],
or ℐ𝑗𝑘, and 𝜀𝑗 can be bounded by ℐ𝑗 = ⋂𝑘 ℐ𝑗𝑘 ∨ [−∞, ∞].  □

Even if the hypothesis Equation 22 is not valid, it is still possible to apply the
reduction. The resulting Zonotope will then be an over-approximation of the initial
one [2].
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5.2. Additional trivial checks.
For every constraint 𝑗, if 𝑏𝑗 = ‖𝐴𝑗‖1

= ‖𝐴′
𝑗‖1

= 0, then the constraint can be
removed. If |𝑏𝑗| > ‖𝐴𝑗‖1

+ ‖𝐴′
𝑗‖1

, then the zonotope is empty.
For every generator 𝑖, if ‖𝐺𝑖‖1 = ‖𝐴𝑖‖1 = 0, the continuous generator 𝑖 can be

removed. If ‖𝐺′
𝑖 ‖1 = ‖𝐴′

𝑖‖1 = 0, the binary generator 𝑖 can be removed.

6. Implementation

6.1. Tuning hyperparameters.
If ‖Λ‖ is big, the norms in the concretisation (‖𝐺 − Λ𝐴‖1) will add a huge

over-approximation, even if 𝐺𝑖 is zero for a given variable. This occurs when the
number of noise generators is large (~1000). To reduce this over-approximation,
it is important to choose well the hyperparameters, especially the learning rate.
Similar to LLM training, it can be chosen very small (~1𝑒 − 5).

6.2. Sparse tensors.
The union makes the size of the tensors grow exponentially, which quickly leads

to OOM errors. For instance, 𝑁 = 1000 with 𝐼 = 1000 requires approximately 10
Go of VRAM. However, as the tensors are mostly empty, it is possible to use sparse
matrices, which considerably reduces the memory footprint. For instance, the same
parameters (𝑁 = 1000, 𝐼 = 1000) takes only 300Mo of VRAM with sparse tensors.
Which makes it usable in practice.

Appendix

A.1 Other dot product.
Proposition 11: (Dot product 2nd version, reduces the number of noise,
but less precise) Let 𝑍1 = ⟨𝑐1, 𝐺1, 𝐺′

1, 𝐴1, 𝐴′
1, 𝑏1⟩, 𝑍2 = ⟨𝑐2, 𝐺2, 𝐺′

2, 𝐴2, 𝐴′
2, 𝑏2⟩ ∈

ℝ𝑁 , then, the dot product can be computed as 𝑍1 ⋅ 𝑍2 = ⟨𝑐, 𝐺, 𝐺′, 𝐴, 𝐴′, 𝑏⟩ with:

𝑐 = 𝑐⊤
1 𝑐2 + 𝑚⊤

1 𝑚2 − 𝑚⊤
1 𝑐2,   𝐺 = [𝑐⊤

2 𝐺1 𝑐⊤
2 𝛿2 𝑚⊤

1 𝛿2 + |𝛿⊤
1 𝛿2|] (27.1)

𝐺′ = [𝑐⊤
2 𝐺′

1],   𝐴 = [𝐴1 0 0],   𝐴′ = 𝐴′
1,   𝑏 = 𝑏1 (27.2)

𝑚1 = 𝑢1 + 𝑙1
2

,   𝑚2 = 𝑢2 + 𝑙2
2

,   𝛿1 = 𝑢1 − 𝑙1
2

,   𝛿2 = 𝑢2 − 𝑙2
2

,   (27.3)

Proof.

𝑍1 ⋅ 𝑍2 = 𝑍⊤
1 (𝑐2 + 𝐺2ℰ2 + 𝐺′

2ℰ′
2) (28.1)

= 𝑐⊤
1 𝑐2 + 𝑐⊤

2 𝐺1ℰ1 + 𝑐⊤
2 𝐺′

1ℰ′
1 + 𝑍⊤

1 𝐺2ℰ2 + 𝑍⊤
1 𝐺′

2ℰ′
2 (28.2)

𝑍1 ⊆ [𝑙1, 𝑢1] = 𝑢1+𝑙1
2 + 𝑢1−𝑙1

2 [−1, 1] = 𝑚1 + 𝛿1𝜉1, 𝜉1 ∈ [−1, 1], and 𝐺2ℰ2 + 𝐺′
2ℰ′

2 =
𝑍2 − 𝑐2 ⊆ 𝑢2+𝑙2

2 + 𝑢2−𝑙2
2 [−1, 1] − 𝑐2 = 𝑚2 − 𝑐2 + 𝛿2𝜉2, 𝜉2 ∈ [−1, 1]. Then,

𝑍⊤
1 (𝐺2ℰ2 + 𝐺′

2ℰ′
2) ⊆ 𝑚⊤

1 𝑚2 − 𝑚⊤
1 𝑐2 + 𝑚⊤

1 𝛿2𝜉2 + 𝜉⊤
1 𝛿⊤

1 𝛿2𝜉2 − 𝜉⊤
1 𝛿⊤

1 𝑐2 (29)

The quadratic term was not removed but changed into 𝜉⊤
1 𝛿⊤

1 𝛿2𝜉2. The difference is
that the constraints also moved, 𝛿1 and 𝛿2 were computed taking into account the
constraints of 𝑍1 and 𝑍2, while the new error terms 𝜉1, 𝜉2 don’t have constraints.
Thus, the new quadratic term can be bounded simply with:
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𝜉⊤
1 𝛿⊤

1 𝛿2𝜉2 ⊆ |𝛿⊤
1 𝛿2| 𝜉2 (30)

Hence:

𝑍⊤
1 (𝐺2ℰ2 + 𝐺′

2ℰ′
2) ⊆ 𝑚⊤

1 𝑚2 − 𝑚⊤
1 𝑐2 + (𝑚⊤

1 𝛿2 + |𝛿⊤
1 𝛿2|)𝜉2 + 𝑐⊤

2 𝛿1𝜉1 (31)

 □
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