

Denoising Score Matching

Victorin Turnel, Thomas Winninger Master MVA - ENS Paris-Saclay

Motivation

Modern generative models (Stable Diffusion, DALL-E) rely on **score-based denoising**, which learns gradients instead of densities, but why?

The Partition Function Problem:

Energy-based models define: $p_{ heta}(x) = rac{\exp(-E_{ heta}(x))}{Z_{ heta}}$

- $E_{ heta(x)}$: Energy function (the neural network).
- $Z_{\theta} = \int \exp(-E_{\theta(x)}) dx$: Normalization constant.

Issue: For high-dim images ($d \approx 10^6$), computing $Z_{ heta}$ is **intractable**.

2. The Score Matching Solution : By modeling the gradient of the log-density (the score), Z_{θ} vanishes!

$$\psi_{\theta(x)} = \nabla_x \log p_{\theta(x)} = -\nabla_x E_{\theta(x)}$$

 Z_{θ} is eliminated because it does not depend on x.

3. Manifold Hypothesis : Real data resides on low-dimensional manifolds. The score is undefined in empty space \rightarrow Therefore, the solution is to perturb data with noise (NCSN).

Score Matching Framework

Goal: Learn the score function $s_{\theta}(x) \approx \nabla_x \log p_{\text{data}}(x)$ to bypass the intractable partition constant Z_{θ} .

1. Implicit Score Matching (ISM) (Hyvärinen, 2005) Minimizes the Fisher divergence with real data:

$$J_{\mathrm{ISM}(\theta)} = \mathbb{E}_{p_{\mathrm{data}}} \left[\frac{1}{2} \|s_{\theta}(x)\|^2 + \mathrm{tr}(\nabla_x s_{\theta}(x)) \right]$$

- \to **Problem:** Even though no partition function and no true score are needed, computing the Jacobian trace is $\mathcal{O}(d^2)$, which is intractable for high-dimensional images.
- **2. Denoising Score Matching (DSM)** (Vincent, 2011) Perturb data with noise $\tilde{x} = x + \sigma \varepsilon$, then match the **conditional** score:

$$J_{\mathrm{DSM}(\theta)} = \mathbb{E}_{q_{\sigma}(\tilde{x}|x)} \left[\frac{1}{2} \left\| s_{\theta}(\tilde{x}) - \underbrace{\frac{x - \tilde{x}}{\sigma^2}}_{\mathrm{Target Score}} \right\|^2 \right]$$

- → **Key Insight:** Now this alternate objective, inspired by denoising autoencoders, is equivalent to explicit score matching. No Hessian trace needed!
- 3. Noise Conditional Score Networks (NCSN) (Song and Ermon, 2020)
- → **Issue:** The score is undefined in low-density regions (Manifold Hypothesis)
- ightarrow **Solution:** Train a single network $s_{ heta}(x,\sigma)$ conditioned on geometric noise levels $\sigma_1>...>\sigma_L$ to populate the ambient space.

Sampling: Annealed Langevin Dynamics

Once the score $s_{\theta}(x, \sigma)$ is learned, how do we generate images?

1. Standard Langevin Dynamics Start from random noise x_0 and iteratively follow the score gradients towards high-density regions:

$$x_{t+1} = x_t + \frac{\varepsilon}{2} s_{\theta}(x_t) + \sqrt{\varepsilon} z_t, \quad z_t \sim \mathcal{N}(0, I)$$

- → **Limitation:** Fails to cross low-density regions between modes (poor mixing).
- **2. Annealed Dynamics (The Fix)** (Song and Ermon, 2020) Use the learned noise levels $\sigma_1 > ... > \sigma_L$ as a schedule:
- Start (High σ): Large steps explore the whole space (good mixing).
- **End (Low** σ): Small steps refine details on the data manifold.

Algorithm: For each noise level σ_i :

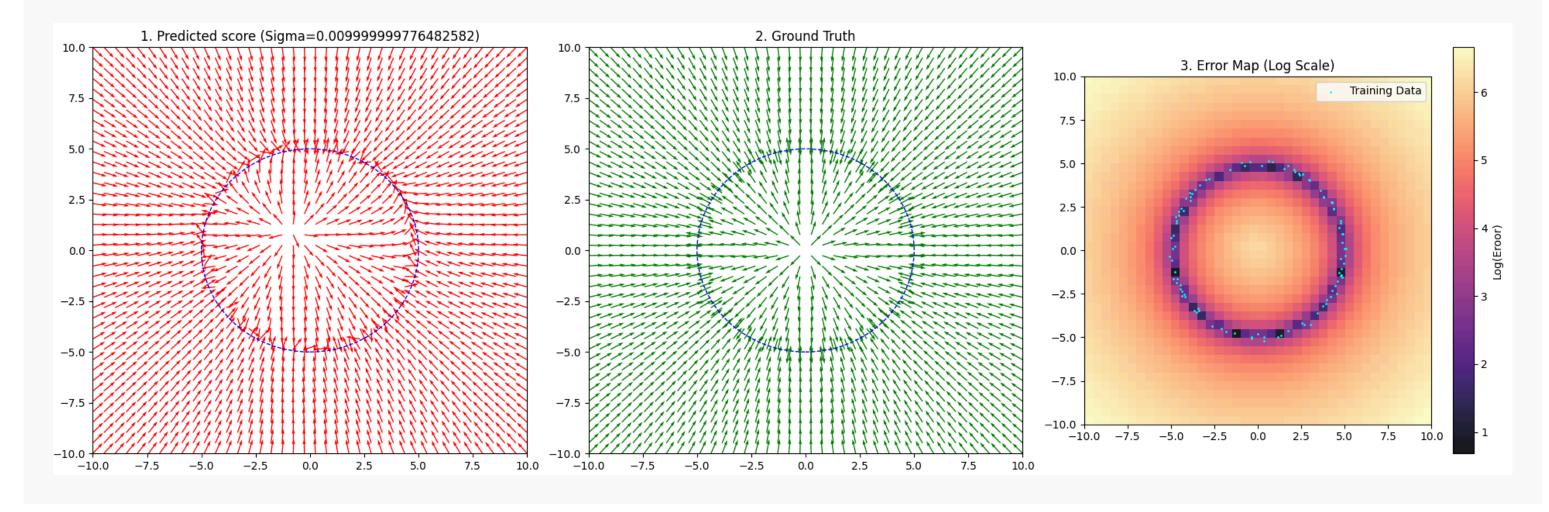
$$x_{t+1} \leftarrow x_t + \frac{\alpha_i}{2} s_{\theta}(x_t, \sigma_i) + \sqrt{\alpha_i} z_t$$

where step size α_i decreases with σ_i .

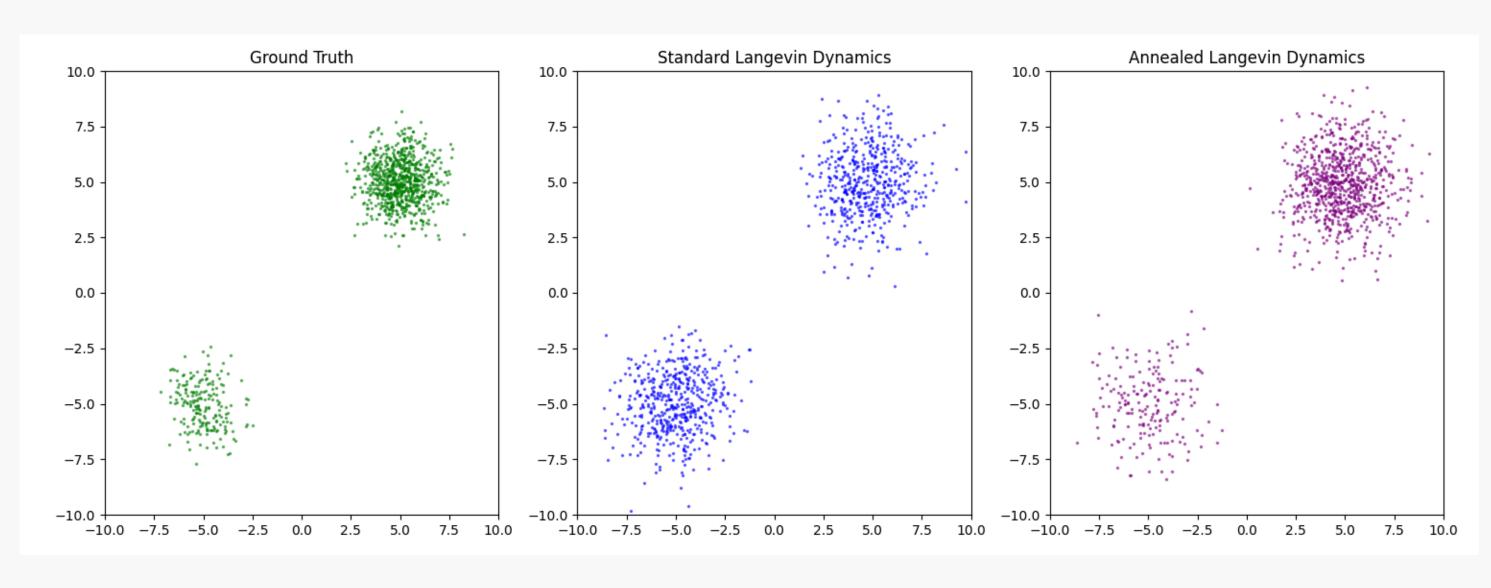
Experiments: Toy Data & Intuition

Before generating images, we validate the method on 2D toy distributions.

- 1. Visualizing the Score Field We trained a simple MLP on a "Circle" distribution.
- The learned score $s_{\theta(x)}$ forms a vector field pointing towards the high-density manifold.
- **Observation:** The score is accurate near data but undefined/random far from it.



- **2. Solving the Mixing Problem** Task: Sample from a Mixture of Gaussians : $p_{\text{data}} = \frac{1}{5}\mathcal{N}((5,5),I) + \frac{4}{5}\mathcal{N}((-5,-5),I)$.
- Standard Langevin: Gets stuck in one mode; fails to recover the distribution weights.
- **Annealed Dynamics:** Large noise steps allow the chain to cross low-density regions and recover both modes correctly (see Fig. 2).

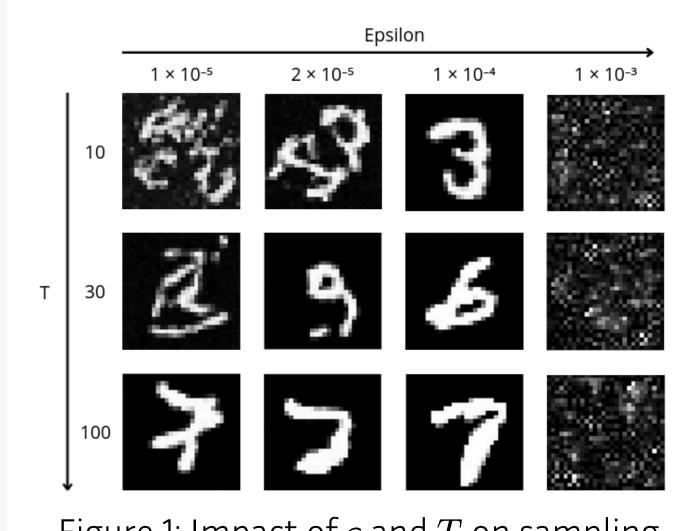


→ **Takeaway:** Multi-scale noise is mandatory for multimodal data!

Image Generation & Stability Analysis

Moving to real images (MNIST), we implemented a simplified U-Net from scratch.

- 1. The Instability Problem Standard training exhibits high variance.
- **Observation:** Note the huge spike at Epoch 10 (FID pprox 11.3) for the Custom model.
- Cause: The score network oscillates around the manifold.
- **2. The Solution: EMA** Exponential Moving Average $(\theta' \leftarrow m\theta' + (1-m)\theta_i)$ stabilizes weights.
- **Result:** FID drops consistently to 0.22.
- **3. Hyperparameters** Optimal sampling requires small step size $\varepsilon \approx 10^{-5}$ and large T=100 to avoid "overshooting" (snow noise).



Epoch	FID	FID	Loss	Loss
	(Cust) ↓	(EMA) ↓	(Cust)	(EMA)
1	-	-	0.4502	0.3068
5	2.9746	0.6112	0.2095	0.1288
10	11.3181	0.3198	0.1609	0.1058
15	0.9717	0.2249	0.1471	0.0971
Talala 1. Ivana at af ENAN and Ctalaility. (FID accourant fundament				

Table 1: Impact of EMA on Stability (FID scores from Report Table 1)

Figure 1: Impact of arepsilon and T on sampling

Using the U-Net architecture from (Song and Ermon, 2020) we tested training the model on a different dataset: Fashion MNIST.

- **4. Model Collapsing** Small models tend to overfit one class and forget the others.
- **Observation:** Our custom U-Net only learned the "shirt" class, while the U-Net from (Song and Ermon, 2020) barely learned other classes at the beginning of the training before collapsing.
- **Cause:** One potential problem could be the capacity of the model, so we tested increasing the dimensions and adding dropout, which helped maintaining stability for a longer time. Experiments with other parameters (σ, T, ε) did not improve stability.

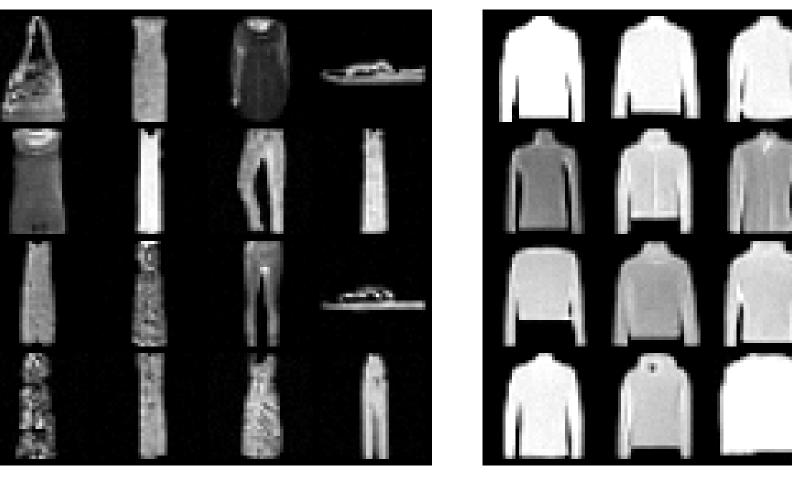




Figure 2: **Left and middle:** (Song and Ermon, 2020)'s U-Net on Fashion MNIST sampled at 30000 and 40000 epochs. **Right:** Slightly bigger model with dropout, sampled at 40000 epochs.

Future directions

Several directions merit exploration:

- ODE samplers can be improved;
- · Diffusion can be used in other applications, like audio, 3D shapes, or molecules;
- Theoretical work can be done to understand why diffusion generalizes so well.

References

Hyvärinen, A. Estimation of Non-Normalized Statistical Models by Score Matching. *Journal of Machine Learning Research*, 6(24), 695–709, 2005.

Song, Y., and Ermon, S. Generative Modeling by Estimating Gradients of the Data Distribution, 2020.

Vincent, P. A Connection Between Score Matching and Denoising Autoencoders. *Neural Computation*, 23(7), 1661–1674, 2011. https://doi.org/10.1162/NECO_a_00142